Coder dude.
The fun part about that: you can burn hydrogen with fluorine because fluorine is the best oxidizer; it’s then deadly (and caustic) because hydrogen is not the best reducer - it’s both an oxidizer and a reducer and, as a result, it’s basically middle-of-the-road for both properties. Specifically, most metals are better. So the HF will happily drop its hydrogen for many metals to oxidize (fluoridate) them instead. Lead, iron, zinc, aluminum, magnesium, and lithium will each make a way more stable fluoride than does hydrogen.
In solution (say, if you inhale HF, it’ll dissolve into the moisture in your lungs), it breaks apart into H⁺ and F⁻ ions - both of which are just straight-up electrochemically promiscuous. The pair’ll run through your lungs breaking up organic bonds like couples at an orgy.
Even so, HF doesn’t hold a candle in terms of danger (and oxidation potential) compared to fluorine peroxide / dioxygen difluoride / FOOF.
Yes.
Not only will metal fires break apart the water into oxygen and hydrogen, but they will consume the oxygen, as the metal oxide is a more stable energy state than is water. So you end up with a billow of hydrogen coming off the fire that mixes with the oxygen just above (because lighter gases rise) the oxygen-depleted zone of the fire, and it combusts there.
Next time it snows, remember: you’re being gently coated in stellar ash.
At least not until there’s a damn web version.
Largely? The lack of convincing emotional range.